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Abstract

We propose a new formulation using the closest point mapping for integrat-
ing over smooth curves and surfaces with boundaries that are described by their
closest point mappings. Contrary to the common practice with level set meth-
ods, the volume integrals derived from our formulation coincide exactly with the
surface or line integrals that one wish to compute. We study various aspects
of this formulation and provide a geometric interpretation of this formulation
in terms of the singular values of the Jacobian matrix of the closest point map-
ping. Additionally, we extend the formulation - initially derived to integrate
over manifolds of codimension one - to include integration along curves in three
dimensions. Some numerical examples are presented.

1 Introduction
This paper provides simple formulations for integrating over manifolds of codimensions
one, or two in R3, when the manifolds are described by functions that map points in
Rn (n = 2, 3) to their closest points on curves or surfaces using the Euclidean distance.
The idea for the formulation originated in [7] where the authors proposed a formulation
for computing integrals of the form

ˆ
∂Ω

v(x(s))ds, (1)

in the level set framework, namely when the domain Ω is represented implicitly by
the signed distance function to its boundary ∂Ω. Typically in a level set method
[11, 12, 14], to evaluate an integral of the form of (1) where ∂Ω is the zero level set
of a continuous function ϕ, it is necessary to extend the function v defined on the
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boundary ∂Ω to a neighborhood in Rn. The extension of v, denoted ṽ, is typically a
constant extension of v. The integral is then approximated by an integral involving a
regularized Dirac-δ function concentrated on ∂Ω, namely

ˆ
∂Ω

v(x(s))ds ≈
ˆ
Rn
ṽ(x)δε(ϕ(x))|∇ϕ(x)|dx.

Various numerical approximations of this delta function have been proposed, see e.g.
[3, 2, 15, 16, 17].

In [7], with the choice of ϕ = d∂Ω being a signed distance function to ∂Ω, the
integral (1) is expressed as an average of integrals over nearby level sets of d∂Ω, where
these nearby level sets continuously sweep a thin tubular neighborhood around the
boundary ∂Ω of radius ε. Consequently, (1) is equivalent to the volume integral shown
on the right hand side below:

ˆ
∂Ω

v(x(s))ds =

ˆ
Rn
v(x∗)J(x; d∂Ω)δε(d∂Ω(x))dx, (2)

where δε is an averaging kernel, x∗ is the closest point on ∂Ω to x and J(x; d∂Ω)
accounts for the change in curvature between the nearby level sets and the zero level
set.

Now suppose that ∂Ω is a smooth hypersurface in R3 and assume that x is suffi-
ciently close to Ω so that the closest point mapping

x∗ = P∂Ω(x) = argminy∈∂Ω|x− y|

is continuously differentiable. Then the restriction of P∂Ω to ∂Ωη is a diffeormorphism
between ∂Ωη and ∂Ω, where ∂Ωη := {x : d∂Ω(x) = η}. As a result, it is possible to
write integrals over ∂Ω using points on ∂Ωη as:

ˆ
∂Ω

v(x)dS =

ˆ
∂Ωη

v(x∗)J(x; η)dS,

where J(x, η) comes from the change of variable defined by P∂Ω restricted on ∂Ωη.
Averaging the above integrals respectively with a kernel, δε, compactly supported in
[−ε, ε], we obtain

ˆ
∂Ω

v(x)dS =

ˆ ε

−ε
δε(η)

ˆ
∂Ωη

v(x∗)J(x; η)dS dη.

Formula (2) then follows from the coarea formula [5] applied to the integral on the
right hand side.

This paper is motivated by the recent success in the closest point methods for
solving partial differential equations on surfaces [8, 9, 10, 13] as well as the need to
process data sets that contain unstructured points sampled from some underlying
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surfaces. In the following section, we show that in three dimensions the Jacobian J
in (2) is the product of the first two singular values, σ1 and σ2, of the Jacobian matrix
of the closest point mapping ∂P∂Ω

∂x
; namely,

ˆ
∂Ω

v(x(s))ds =

ˆ
R3

v(P∂Ω(x))δε(d∂Ω(x))
2∏
j=1

σj(x)dx.

To motivate the new approach using singular values, we consider Cartesian coordinate
systems with the origin placed on points sufficiently close to the surface, and the
z direction normal to the surface. Thus the partial derivatives of the closest point
mapping in the z direction will yield zero and the partial derivative in the other two
directions naturally correspond to differentiation in the tangential directions. Thus
we see that one of the singular values should be 0 while the other two are related to
the surface area element. We also derive a similar formula for integration along curves
in three dimensions (codimension 2). The advantages of this new formula include the
ease for constructing higher order approximations of J via e.g. simple differencing,
even in neighborhoods of surface boundaries where curvatures become unbounded.

For clarity of the exposition in the rest of the paper, we will now denote the distance
function simply by d.

2 Integration using the closest point mapping
In this section, we relate the Jacobian J in (2) to the singular values of the Jacobian
matrix of the closest point mapping from R2 or R3 to Γ, where Γ denotes the curves
or surfaces on which integrals are defined. We assume that in three dimensions, if Γ
is not closed, it has smooth boundaries.

2.1 Codimension 1

We consider a C2 compact curve or surface Γ that can either be closed or not. If Γ
is closed, then it is the boundary of a domain Ω so that Γ can be denoted ∂Ω. If Γ
is not closed, we assume that it has smooth boundaries. We define d : Rn 7→ R ∪ {0}
to be the distance function to Γ and PΓ to be the closest point mapping PΓ : Rn 7→ Γ
(for n = 2, 3) defined as

|PΓ(x)− x| = min
y∈Γ
|y − x|. (3)

We let d0 be the distance function to Γ if it is open and ds be the signed distance
function to Γ = ∂Ω if it is closed. The signed distance function is defined as

ds(x) :=

{
infy∈Ωc |x− y| if x ∈ Ω,

− infy∈Ω |x− y| if x ∈ Ω̄c.
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Then we define d as follows:

d(x) :=

{
d0(x) if Γ is open,
ds(x) if Γ is closed.

(4)

Lemma 1. Let d be the distance function to Γ defined in (4). For |η| sufficiently close
to 0, the Gaussian curvature at a point on the η level set Γη := {ξ : d(ξ) = η} can be
expressed as

Gη = dxxdyy + dxxdzz + dyydzz − d2
xy − d2

xz − d2
yz. (5)

Proof. Starting with the definition of the Gaussian curvature G for a surface (see [6]),
we can obtain an expression for the Gaussian curvature of its η-level set in terms of d
as

G = 〈∇d, adj(Hess(d))∇d〉
= d2

x(dyydzz − d2
yz) + d2

y(dxxdzz − d2
xz) + d2

z(dxxdyy − d2
xy)

+ 2[dxdy(dxzdyz − dxydzz) + dydz(dxydxz − dyzdxx)
+ dxdz(dxydyz − dxzdyy)]. (6)

We show that this expression is the same as (5) by rearranging the terms above and
using the fact that close to Γ the distance function satisfies |∇d| = 1. First we
rearrange the terms in G:

G = d2
xdyydzz + d2

ydxxdzz + d2
zdxxdyy − d2

xd
2
yz − d2

yd
2
xz − d2

zd
2
xy

+2[dxdy(dxzdyz − dxydzz) + dydz(dxydxz − dyzdxx) + dxdz(dxydyz − dxzdyy)],

and rewrite each of the first six terms in terms of |∇d|2, e.g.

d2
xdyydzz = |∇d|2︸ ︷︷ ︸

=1

dyydzz − d2
ydyydzz − d2

zdyydzz = dyydzz − d2
ydyydzz − d2

zdyydzz.

Thus we have

d2
xdyydzz + d2

ydxxdzz + d2
zdxxdyy − d2

xd
2
yz − d2

yd
2
xz − d2

zd
2
xy

= dxxdyy + dxxdzz + dyydzz − d2
xy − d2

xz − d2
yz︸ ︷︷ ︸

=Gη

−d2
ydyydzz − d2

zdyydzz

−d2
xdxxdzz − d2

zdxxdzz − d2
ydxxdyy − d2

xdxxdyy (7)
+d2

yd
2
yz + d2

zd
2
yz + d2

xd
2
xz + d2

zd
2
xz + d2

xd
2
xy + d2

yd
2
xy

Using (7) and rearranging the rest of the terms in (6) we obtain G = Gη.

4



Proposition 2. Consider a C2 compact surface Γ ⊂ Rn (n = 2, 3) of codimension 1
and let d be defined as in (4). Define the closest point projection map PΓ as in (3) for
x ∈ Rn. For |η| sufficiently close to zero, let Γη be the η level set of d

Γη := {x : d(x) = η} . (8)

Define the Jacobian Jη as

Jη :=

{
1 + ηκη if n = 2,
1+2ηHη + η2Gη if n = 3,

where κη is the signed curvature of Γη in 2D, and Hη and Gη are its Mean curvature
and Gaussian curvature respectively in 3D.

Then if ∂PΓ

∂x
is the Jacobian matrix of PΓ we have

Jη =

{
σ1, n = 2,
σ1σ2, n = 3,

(9)

where σ1, σ2 are the first two singular values of the Jacobian matrix ∂PΓ

∂x
.

Proof. The distance function d satisfies the property d(x) = 0 for x ∈ Γ. Also, since Γ
is C2, its distance function d belongs to C2(Rn,R); see e.g. [1, 4]. It follows that the
order of the mixed partial derivatives does not matter. In addition, the normals to a
smooth interface do not focus right away so that the distance function is smooth in
a tubular neighborhood T around Γ, and is linear with slope one along the normals.
Therefore we have

|∇d| = 1 for all x ∈ T. (10)

The third important fact is that the Laplacian of d at a point x gives (up to a constant
related to the dimension) the mean curvature of the isosurface of d passing through
x, namely

∆d(x) = (1− n)H(x), (11)

where H(x) is the Mean curvature of the level set {y : d(y) = d(x)}. Differentiating
(10) with respect to each variable gives the following equations in three dimensions:

dxdxx + dydxy + dzdxz = 0, (12)
dxdyx + dydyy + dzdyz = 0, (13)
dxdzx + dydzy + dzdzz = 0. (14)

In particular the two dimensional case can be derived by assuming that the distance
function is constant in z.
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Two dimensions. In that case the Jacobian matrix ∂PΓ

∂x
of the closest point pro-

jection map is
∂PΓ

∂x
=

(
1− d2

x − ddxx −(dydx + ddyx)
−(dxdy + ddxy) 1− d2

y − ddyy

)
.

Since Schwartz’ Theorem holds, we have dxy = dyx making ∂PΓ

∂x
a real symmetric

matrix. It is therefore diagonalizable with eigenvalues 0 and 1−d∆d. Indeed, we have

∂PΓ

∂x
∇d =


dx( 1− d2

x − d2
y︸ ︷︷ ︸

=0 by (10) in 2D

)− d( dxdxx + dydyx︸ ︷︷ ︸
=0 by (12) in 2D

)

dy( 1− d2
x − d2

y︸ ︷︷ ︸
=0 by (10) in 2D

)− d( dydyy + dxdxy︸ ︷︷ ︸
=0 by (13) in 2D

)

 = 0,

and for v =

(
−dy
dx

)
,

∂PΓ

∂x
v =

(
−dy + dyd

2
x + dyddxx − d2

xdy − ddxdxy
d2
ydx + dyddxx − d2

ydx − dxddyy

)
=

(
−dy
dx

)
+ d

(
dydxx − dxdxy
dydxy − dxdyy

)

= v + d


−∆d(−dy)− (dydyy + dxdxy)︸ ︷︷ ︸

=0 by (13) in 2D

−∆d(dx) + dxdxx + dydxy︸ ︷︷ ︸
=0 by (12) in 2D


= (1− d∆d)v.

Since ||v|| = 1, v is an eigenvector corresponding to the eigenvalue λ = 1−d∆d. Thus,
for x such that d(x) = η we have that the eigenvalue λ of ∂PΓ

∂x
satisfies

λ = 1− η∆d = 1 + ηκη

by (11). Since 1 + ηκη ≥ 0, it follows that λ coincides with the singular value of ∂PΓ

∂x

and hence
σ1 = 1 + ηκη.

Three dimensions. Since for |η| sufficiently close to 0 the distance function is C2,
the Jacobian matrix

∂PΓ

∂x
=

 1− d2
x − ddxx −(dydx + ddyx) −(dzdx + ddzx)

−(dxdy + ddxy) 1− d2
y − ddyy −(dzdy + ddzy)

−(dxdz + ddxz) −(dydz + ddyz) 1− d2
z − ddzz

 ,

6



is a real symmetric matrix which is diagonalizable with one zero eigenvalue and two
other eigenvalues λ1 and λ2. Indeed using (12),(13),(14) and (10) we can show that

∂PΓ

∂x
∇d = 0.

Now consider x such that d(x) = η. Then, the characteristic polynomial χ(λ) of ∂PΓ

∂x

is
χ(λ) = −λ

(
λ2 − (2− η∆d)λ−Q

)
,

where Q = −Gηη
2 + η∆d− 1 with Gη defined in (5). Since the other two eigenvalues

of ∂PΓ

∂x
are the solutions of the quadratic equation λ2 − (2 − η∆d)λ − Q = 0, it

follows that
λ1λ2 = −Q = 1− η∆d+ η2Gη = 1 + 2ηHη + η2Gη.

Since 1 + 2ηHη + η2Gη ≥ 0, it follows that

σ1σ2 = 1 + 2ηHη + η2Gη,

where σ1 and σ2 are singular values of ∂PΓ

∂x
.

This leads to the following proposition:

Theorem 3. Consider Γ a curve in 2D or surface in 3D with C2 boundaries if it is
not closed, and define d : Rn 7→ R+ ∪ {0} (n = 2, 3) to be the distance function to Γ
with PΓ : Rn 7→ Γ the closest point mapping to Γ. Then

ˆ
Γ

v(x)dx =

ˆ
Rn
v(PΓ(x)δε(d(x))Σ(x)dx, (15)

where δε is an averaging kernel and Σ(x)is defined as

Σ(x) =

{
σ1(x), n = 2,
σ1(x)σ2(x), n = 3,

where σj(x) , j = 1, 2, is the j-th singular value of the Jacobian matrix, ∂PΓ

∂x
evaluated

at x.

Proof. If Γ is closed we combine Equation (2) with the result J(x) = Σ(x) from
Equation (9) of Proposition 2.

If Γ is open there is a little more to show since Equation (2) was only derived for
closed manifolds. Before we state the result, it is necessary to understand how Γη
defined in (8) (an η−level set of d) looks like for an open curve in two dimensions and
for a surface with boundaries in three dimensions.
In two dimensions, Γη consists of a flat tubular part on either side of the curve and
two semi circles at the two ends of the curve. See Figure 1.
In three dimensions Γ is in general made up of three distinct parts: the interior part,
the edges of the boundary and the corners. If we assume that Γ has N edges then
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Figure 1: An example of an open curve Γ (black curve) and its η-level set Γη (red
curve). Γη consists of a tubular part and two semi circles at the two ends.

we can write Γ = Γo ∪ (∪Ni=1Ei) ∪ (∪Ni=1Ci), where Γo is the interior of Γ, Ei is the
i-th edge of the boundary of Γ and Ci is its i -th corner. In that setting we can write
Γη = Iη∪(∪Ni=1T

η
i )∪(∪Ni=1S

η
i ), where Iη is the inside portion of Γη, T ηi is the cylindrical

part of Γη representing the set of points located at a distance η from the i -th edge
Ei, and finally Sηi is the spherical part of Γη representing the set of points located at
a distance η from the i -th corner Ci. See Figure 2.

Figure 2: An example of a surface with boundaries viewed from different angles (2(a),
2(b) and 2(c)) and its corresponding η-level set Γη viewed from the same angles (2(d),
2(e) and 2(f)). Figure 2(f) shows the surface and Γη.

In both cases we need to integrate over Γη and then subtract the two semi circles at
the two end points of the curve (in two dimensions) or subtract the portions of sphere
at the corners of the surface and the portions of cylinders at the edges of the surface
(in three dimensions). However, it turns out that the subtraction is unnecessary since
Σ(x) = 0 on each of the subtracted pieces as shown below.

• Two dimensions. On the semi-circle around the end point of a curve, the
closest point mapping is constant since all points on the semi-circle Γη map to
the end point. As a result, the singular values of the Jacobian matrix of the
closest point mapping are all zeros and thus Σ(x) = 0 on the semi-circles around
the end points of a curve.

8



• Three dimensions. As in two dimensions, on the portions of sphere around a
corner point of a surface, the closest point mapping is constant and thus Σ(x) =
0. On the portion of cylinders, the closest point mapping is constant along the
radial dimension (one of the principal directions or singular vector) resulting of
the singular value along that direction to be zero. Since Σ(x) is the product of
the singular values, it follows that Σ(x) = 0 on the portion of cylinders as well.

Consequently, Equation (15) holds for any C2 curve or surface with C2 boundaries of
codimension 1.

2.2 Codimension 2

We consider a C2 curve in R3 denoted by Γ and let γ(s) be a parameterization by
arclength of Γ. We denote by d : R3 7→ R+ ∪ {0} the distance function to Γ and let
PΓ : R3 7→ Γ be the closest point mapping to Γ. We consider a parameterization of
the tubular part of the level surface for η ∈ [0, ε] defined as

x(s, θ, η) : γ(s) + η cos θ ~N(s) + η sin θ~B(s),

where ~T = dγ
ds
, ~N and ~B constitute the Frenet frame for γ as illustrated in Figure 3.

As in the previous section, if Γ is closed then d is the signed distance function to Γ .

Figure 3: Three dimensional curve with its η-level surface Γη in green and the Frenet
frame at a point on Γη.

If we project a point x on the tubular part of the level surface Γη defined in (8),
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we have PΓ(x(s, θ, η)) = γ(s). If L is the length of the curve it follows that
ˆ 2π

0

ˆ L

0

g(PΓ(x(s, θ, η)))|xs × xθ|dsdθ =

ˆ 2π

0

ˆ L

0

g(γ(s))η(1− ηκ(s) cos θ)dsdθ,

(16)

= η

ˆ L

0

g(γ(s))

ˆ 2π

0

(1− ηκ cos θ)dθds,

= 2πη

ˆ
g(γ(s))ds.

Note that the tubular part of the level surface Γη does not contain the two hemi-
spheres of Γη which are located at the two end points of the curve Γ. Thus,

ˆ
Γη\{C1∪C2}

g(PΓ(x))dSx = 2πη

ˆ
Γ

gds, (17)

where C1 and C2 are the two hemispheres of the level surface Γη located at the two
end points of the curve Γ. Consequently, for sufficiently small ε and by the coarea
formula we obtain

ˆ
Γ

g(γ(s))ds =
1

2π

ˆ ε

0

(
1

η

ˆ
Γη\{C1∪C2}

g(PΓ(x))

)
Kε(η)dη,

=
1

2π

ˆ
R3

g(PΓ(x))
Kε(d)

d
χ(C1∪C2)c(x)dx,

where Kε is a C1 averaging kernel supported in [0, ε] and χ(C1∪C2)c(x) is the charac-
teristic function of the set (C1 ∪ C2)c. In our numerical simulations we consider the
kernel

K1,1
ε (η) =

1

ε

(
1− cos

(
2π
η

ε

))
χ[0,ε](η). (18)

Since the formulation above does not use the two hemispheres located at both end
points of the curve, in order to integrate over the tubular part of Γη only, it is necessary
to subtract the integration over each of the hemispheres C1 and C2 . The result can
be summarized in the following proposition:

Proposition 4. Consider a single C2 curve Γ in R3 parameterized by γ(s) where s is
the arclength parameter, and let d be the distance function to Γ. We define Kε to be
a C1 averaging kernel compactly supported in [0, ε] and PΓ : R3 7→ Γ to be the closest
point mapping to Γ.

If g is a continuous function defined on Γ then for sufficiently small ε > 0 we haveˆ
Γ

g(γ(s))ds =
1

2π

ˆ
R3

g(PΓ(x))
Kε(d(x))

d(x)
dx− 2

ˆ ε

0

g(xη)ηKε(η)dη, (19)

where xη is a point on a sphere of radius η.

10



Note that for the computation of the length of a curve, the correction terms given
by integrating over both C1 and C2 is

ˆ ε

0

Kε(η)

η
|S1|dη =

ˆ ε

0

Kε(η)

η
4πη2dη = 2πε.

This simple correction is, however, not suitable for more general cases that contain
multiple curve segments and several integrands. We shall derive a more elegant and
seamless way to perform such correction in the following section.

Now if we consider a C2 curve in three dimensions and let PΓ be its closest point
mapping, we have the following proposition:

Theorem 5. Let σ(x) be the nonzero singular value of ∂PΓ

∂x
and let g be a continu-

ous function defined on Γ. If γ(s) is the arclength parameterization of Γ and if ε is
sufficiently small we have

ˆ
Γ

g(γ(s))ds =
1

2π

ˆ
R3

g(PΓ(x))
Kε(d)

d
σ(x)dx, (20)

where d is the distance function to Γ.

Proof. Let x ∈ R3. Then there exists η > 0, such that x ∈ Γη.

Case 1: x is on the spherical part of Γη corresponding to the η-distance to either of
the two end points of the curve Γ. WLOG we assume that x is at a distance η from the
first end point C1 parameterized by γ(0). The result is the same if x is on the other
sphere, i.e. at a distance η from the other end point C2. In that case, PΓ(x) = γ(0)

for all x on the spherical part so that the Jacobian matrix ∂PΓ(x)
∂x

= 0 . Therefore, for
x on the spherical part of Γη, all singular values of the Jacobian matrix are zero.

Case 2: x is on the tubular part of Γη. In that case, if we use the Frenet frame
centered at the point x = x(s, θ, η) ∈ Γη , we can write x in the new coordinate
system (~T, ~N, ~B) as

x = γ(s) + v ~N + w ~B, (21)

where u = 0 is the coordinate of x along ~T, v is the coordinate along ~N and w is the
coordinate along ~B. Since the projection PΓ(x) = γ(s) does not depend on v nor w
(since the plane (~N, ~B) is normal to the curve Γ) is follows that

∂PΓ(x)

∂v
=
∂PΓ(x)

∂w
= 0.

On the other hand, we have

∂PΓ(x)

∂u
=
∂γ(s)

∂u
=
∂s

∂u

∂γ(s)

∂s
=
∂s

∂u
~T,

11



where ∂s
∂u

is the variation of the arclength parameter s with respect to u when the point
x is moving on Γη along the tangential direction ~T. Since u is the arclength parameter
along the tangential direction ~T, it follows that we have a unit speed parameterization
along ~T giving the identity

∂x

∂u
· ~T = 1.

In addition,

∂x

∂s
=
∂γ(s)

∂s
+ v

~N

∂s
+ w

~B

∂s

= ~T− κv~T + τv~B− τw~N
= (1− κv) ~T− τw~N + τv~B,

where κ is the curvature of Γ at γ(s) and τ is the torsion of the curve Γ at the point
γ(s). Since the level surface Γη is a tube of radius η, its intersection with the normal
plane (~N, ~B) is a circle of radius η. Hence if we use polar coordinates on the normal
plane, we obtain v = η cos θ and w = η sin θ . It follows that

∂x

∂s
· ~T = 1− κη cos θ.

Consequently we have

∂x

∂u
· ~T = 1 =

∂s

∂u

∂x

∂s
· ~T =

∂s

∂u
(1− κη cos θ),

and
∂s

∂u
=

1

1− κη cos θ
.

Therefore, in the Frenet frame, the Jacobian matrix of the closest point projection
map can be written as

∂PΓ

∂x
=

 1
1−κη cos θ

0 0

0 0 0
0 0 0

 ,

where 1
1−κη cos θ

is the nonzero eigenvalue of the Jacobian of the closest point mapping.
Since 1

1−κη cos θ
≥ 0, it is also its singular value σ(x).

Therefore we have

σ(x) =

{
0 if x is on the spherical part of Γη,

1
1−κη cos θ

if x is on the tubular part of Γη.
(22)

12



Now using (16) and (17) we obtain
ˆ

Γη

g(PΓ(x))σ(x)dSx =

ˆ
Γη\{C1

⋃
C2}

g(PΓ(x))σ(x)dSx

=

ˆ 2π

0

ˆ L

0

g(PΓ(x))σ(x)|xs × xθ|dsdθ

=

ˆ 2π

0

ˆ L

0

g(γ(s))η
1− ηκ(s) cos θ

1− ηκ(s) cos θ
dsdθ

= 2πη

ˆ L

0

g(γ(s))ds

It follows that forKε a C1 averaging kernel compactly supported in [0, ε], for sufficiently
small ε and by the coarea formula, we have

ˆ
Γ

gds =
1

2π

ˆ ε

0

1

η

ˆ
Γη

g(PΓ(x))σ(x)Kε(η)dη

=
1

2π

ˆ
R3

g(PΓ(x))
Kε(d)

d
σ(x)dx.

3 Numerical simulations
In this section we investigate the convergence of our numerical integration using simple
Riemann sum over uniform Cartesian grids. In our computations we use the cosine
kernel

Kcos
ε (η) = χ[0,ε](η)

1

2ε

(
1 + cos

(πη
ε

))
for integration on surfaces of codimension 1, and the kernel K1,1

ε defined in (18) for
codimension 2. Unless stated otherwise, the singular values are computed from the
matrix whose elements are computed by the standard central difference approximations
of the Jacobian matrix ∂PΓ

∂x
. With these compactly supported kernels, formulas (15)

and (20) can be considered integration of functions defined on suitable hypercubes,
periodically extended. In such settings, simple Riemann sums on Cartesian grids are
equivalent to sums suing Trapezoidal rule, and the order of accuracy will be related in
general to the smoothness of the integrands; exception can be found when the normals
of the surfaces are rationally dependent on the step sizes used in the Cartesian grids.

3.1 Integration of codimension one surfaces

We tested our numerical integration on two different portions of circle, a torus, a
quarter sphere and a three quarter sphere. We computed their respective lengths or

13



surface areas by integrating the constant 1 over the curve or surface. Each of these
tests were designed to exhibit the convergence rate of our formulations on cases with
varying difficulty. In particular, the convergence rate of our formulation depends on
the smoothness of the closest point mapping inside the tubular neighborhood of the
surfaces.

The results for the portions of circle are given in Tables 1 and 2. In the first
convergence studies (Table 1) the line where the closest point mapping has a jump
discontinuity is parallel to the grid lines. In this case we see a second order convergence
rate using central differencing to compute the Jacobian matrix ∂PΓ

∂x
. In the second test

case however, the portion of circle is chosen so that the line where the closest point
mapping has a jump discontinuity is not parallel to the grid lines. In that case the
normal to the curve is rationally dependent on the step size of the Cartesian grid and
the convergence rate reduces to first order even though we used central differencing to
compute ∂PΓ

∂x
. We note that in these two tests, we chose ε (the half width of the tubular

neighborhood around the curve) small enough so that the line where the closest point
mapping is discontinuous is outside of it.

In three dimensions we first tested our method on a torus (closed smooth surface).
The results for the torus are reported in Table 3. In this case the closest point mapping
is very smooth and we see third order convergence when using a third order difference
scheme to approximate ∂PΓ

∂x
. For surfaces with boundaries we tested the method on a

quarter sphere and a three quarter sphere. The three quarter sphere case is illustrated
in Figure 4.

Figure 4: The three quarter sphere (4(a)) and its corresponding η-level set Γη (4(b)).

The reason for choosing these two cases is because the closest point mapping has
a different degree of smoothness for each of these surfaces. For the quarter sphere the
closest point mapping is smooth enough, but for the three quarter sphere, the tubular
neighborhood around the surface contains the line where the closest point mapping has
a jump discontinuity. In that latter case, it is therefore necessary to use an adequate
one sided discretization to compute ∂PΓ

∂x
accurately. The one-sided discretization that

we used is reported in Section 3.3. The test for the quarter sphere still uses central
differencing to compute ∂PΓ

∂x
. The results for the portions of sphere are reported in

Tables 4 and 5.
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Table 1: Relative errors in the numerical approximation of the length of a planar
curve, which is a portion of circle of radius R = 0.75 centered at 0. The width for the
tubular neighborhood of the curve is ε = 0.2. In this computation, the closest point
mapping has a jump discontinuity along a straight-line which is arranged to be parallel
to the grid lines.

n Relative Error Order
64 2.7994× 10−4 –
128 7.0665× 10−5 1.99
256 1.7187× 10−5 2.04
512 4.2719× 10−6 2.01
1024 1.0636× 10−6 2.01
2048 2.6567× 10−7 2.00
4096 6.6045× 10−8 2.01
8192 1.6513× 10−8 2.00

Table 2: Relative errors in the numerical approximation of the length of a planar curve,
which is a portion of circle of radius R = 0.75 centered at 0. The width for the tubular
neighborhood of the curve is ε = 0.2. In this computation, the jump discontinuity of
the closest point mapping is not parallel to the grid lines.

n Relative Error Order
64 3.7159× 10−5 –
128 2.5786× 10−7 7.17
256 4.2361× 10−6 −4.04
512 3.2246× 10−6 0.39
1024 1.8876× 10−6 0.77
2048 1.0132× 10−7 0.90
4096 5.2372× 10−7 0.95
8192 2.6615× 10−7 0.98
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Table 3: Relative errors in the numerical approximation of the surface area of a torus
centered at 0. The distance from the center to the tube that form the torus is R = 0.75
and the radius of the tube is r = 0.25. In this computation, we summed up grid
points that are within ε = 0.2 distance from the surface. The Jacobian matrix ∂PΓ

∂x
is

approximated by a standard third order accurate differencing.

n Relative Error Order
32 6.2030× 10−3 −
64 1.8073× 10−4 5.10
128 6.6838× 10−6 4.76
256 4.1530× 10−7 4.01
512 5.0379× 10−8 3.04

Table 4: Relative errors in the numerical approximation of the surface area of a quarter
sphere with radius R = 0.75 centered at 0. In this computation, we summed up grid
points that are within ε = 0.2 distance from the surface. We used the standard central
difference scheme to compute each entry of the Jacobian matrix ∂PΓ

∂x
.

n Relative Error Order
32 9.2825× 10−3 −
64 1.8365× 10−3 2.34
128 2.7726× 10−4 2.73
256 7.1886× 10−5 1.95
512 1.4811× 10−5 2.30

Table 5: Relative errors in the numerical approximation of the surface area of a 3/4
sphere with radius R = 0.75 centered at 0 (this is the portion of a sphere that misses
half of a hemisphere). In this computation, we summed up grid points that are within
ε = 0.2 distance from the surface. Due to this setup, the closest point mapping
has a discontinuity that stems out from the boundary of the surface. We used the
discretization described in Section 3.3 to compute each entry of the Jacobian matrix
∂PΓ

∂x
.

n Relative Error Order
32 1.1726× 10−2 −
64 1.1733× 10−3 3.32
128 9.1325× 10−4 0.36
256 3.8238× 10−4 1.26
512 7.8308× 10−5 2.29
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3.2 Integrating along curves in three dimensions

In codimension 2, we tested our numerical integration on a coil wrapped around the
helix defined parametrically as

x(t) = (r cos(t), r sin(t), bt) ,

with r = 0.75 and b = 0.25. The coil is then wrapped around the helix at a distance of
0.2 from the helix. As our test case, we computed the length of the coil by integrating
1 along the curve. The results are reported in Table 6.

Figure 5: The coil and one of the level sets of the distance function to the coil used in
the reported numerical simulations.

Table 6: Relative errors in the numerical approximation of a coil wrapped around a
helix. In this computation, we used a constant width for the tubular neighborhood
ε = 0.1 and took the averaging kernels to be K1,1

ε defined in (18).

n Relative Error Order
60 5.5078× 10−3 −
120 1.1476× 10−3 2.63
240 2.3409× 10−4 2.29
480 3.7166× 10−5 2.66

3.3 One-sided discretization of the Jacobian matrix

Here for completeness, we describe the one-sided discretization used in computing
results reported in Table 5.

For simplicity, we will describe the one-sided discretization for a uniform Cartesian
grid, namely for PΓ(xi,j) = (Ui,j, Vi,j) with xi,j = (ih, jh), i, j ∈ Z and h > 0 being
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the step size. The Jacobian matrix will be approximated by simple finite differences
defined below:

∂PΓ

∂x
(xi,j) ≈

(
(Ux)i,j (Uy)i,j
(Vx)i,j (Vy)i,j

)
.

The discretization of U and V have to be defined together because the two functions
are not independent of each other. With

(U±x )i,j := ± 1

2h
(−3Ui,j + 4Ui±1,j − Ui±2,j) ,

and the smoothness indicator

S±i,j = S±(Ui,j) := 4+4−Ui±1,j

we define

(Ux)i,j :=

{
(U+

x )i,j, if |S+
i,j| ≤ |S−i,j|,

(U−x )i,j, otherwise,

and (Vx)i,j is defined according to the choice of stencil based on S±(Ui,j)

(Vx)i,j :=

{
(V +

x )i,j, if |S+
i,j| ≤ |S−i,j|,

(V −x )i,j, otherwise.

The discretization of Uy and Vy is defined similarly with the choice of the stencil based
on S±(Vi,j).

4 Summary
In this paper, we presented a new approach for computing integrals along curves and
surfaces that are defined either implicitly by the distance function to these manifolds
or by the closest point mappings. We are motivated by the abundance of discrete
point sets sampled from surfaces using devices such as LIDAR, the need to compute
functionals defined over the underlying surfaces, as well as many applications involving
the level set method or the use of closest point methods.

Contrary to most other existing approximations using either smeared out Dirac
delta functions or locally obtained parameterized patches, we derive a volume integral
in the embedding Euclidean space which is equivalent to the desired surface or line
integrals. This allows for easy construction of higher order numerical approximations
of these integrals. The key components of this new approach include the use of singular
values of the Jacobian matrix of the closest point mapping, which can be computed
easily to high order even by simple finite differences.
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